Learn More
The enzymatic conjugation of arginine to the N-termini of proteins is a part of the ubiquitin-dependent N-end rule pathway of protein degradation. In mammals, three N-terminal residues-aspartate, glutamate, and cysteine-are substrates for arginylation. The mouse ATE1 gene encodes a family of Arg-tRNA-protein transferases (R-transferases) that mediate(More)
Substrates of a ubiquitin-dependent proteolytic system called the N-end rule pathway include proteins with destabilizing N-terminal residues. N-recognins, the pathway's ubiquitin ligases, contain three substrate-binding sites. The type-1 site is specific for basic N-terminal residues (Arg, Lys, and His). The type-2 site is specific for bulky hydrophobic(More)
Protein degradation by the ubiquitin (Ub) system controls the concentrations of many regulatory proteins. The degradation signals (degrons) of these proteins are recognized by the system's Ub ligases (complexes of E2 and E3 enzymes). Two substrate-binding sites of UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces cerevisiae, recognize basic(More)
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies(More)
Salmonella enterica utilizes a type III secretion system (TTSS) encoded in its pathogenicity island 1 to mediate its initial interactions with intestinal epithelial cells, which are characterized by the stimulation of actin cytoskeleton reorganization and a profound reprogramming of gene expression. These responses result from the stimulation of Rho-family(More)
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNA(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of(More)
Substrates of a ubiquitindependent proteolytic system called the N-end rule pathway include proteins with destabilizing N-terminal residues. Nrecognins, the pathway’s ubiquitin ligases, contain three substrate-binding sites. The type-1 site is specific for basic N-terminal residues (Arg, Lys, His). The type-2 site is specific for bulky hydrophobic(More)
  • 1