Learn More
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose(More)
Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We(More)
We have previously reported the discovery and preliminary structure activity relationships of a series of beta-aminoketones that disrupt the binding of coactivators to TR. However, the most active compounds had moderate inhibitory potency and relatively high cytotoxicity, resulting in narrow therapeutic index. Additionally, preliminary evaluation of in vivo(More)
Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has(More)
Nutlin-3a is an MDM2 inhibitor that is under investigation in preclinical models for a variety of pediatric malignancies, including retinoblastoma, rhabdomyosarcoma, neuroblastoma, and leukemia. We used physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of nutlin-3a in the mouse. Plasma protein binding and blood(More)
The p53 pathway is disrupted in virtually every human tumor. In approximately 50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased(More)
Retinoblastoma is a rare childhood cancer of the retina that begins in utero and is diagnosed in the first years of life. The goals of retinoblastoma treatment are ocular salvage, vision preservation, and reduction of short- and long-term side effects without risking mortality because of tumor dissemination. To identify better chemotherapeutic combinations(More)
Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. The cysteine proteases of T. brucei have been shown to be crucial for parasite replication and represent an attractive point for therapeutic intervention. Herein we describe the synthesis of a series of thiosemicarbazones and their activity against the trypanosomal(More)
Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues(More)
We previously reported a novel inhibitor of the ataxia-telangiectasia mutated (ATM) kinase, which is a target for novel radiosensitizing drugs. While our initial lead, compound 4, was relatively potent and nontoxic, it exhibited poor stability to oxidative metabolism and relatively poor selectivity against other kinases. The current study focused on(More)