Fangwei Shao

Learn More
DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of(More)
Here we examine the photooxidation of two kinetically fast electron hole traps, N4-cyclopropylcytosine (CPC) and N2-cyclopropylamine-guanosine (CPG), incorporated in DNA duplexes of various sequence using different photooxidants. DNA oxidation studies are carried out either with noncovalently bound [Ru(phen)(dppz)(bpy')]3+ (dppz = dipyridophenazine) and(More)
We report on a systematic study of upconverting fluorescence signal generation within turbid phantoms and real tissues. An accurate three-point Green's function, describing the forward model of photon propagation, is established and experimentally validated. We further demonstrate, for the first time to our knowledge, autofluorescence-free transillumination(More)
Cyclometalated Ir(III) complexes tethered to 18-mer oligonucleotides through a functionalized dipyridophenazine ligand have been used to study the distance dependence profile of hole and electron transport along DNA. These DNA assemblies allow a direct comparison of hole and electron transport with a single donor coupled into the base stack. Interestingly,(More)
Heteroleptic cyclometalated complexes of Ir(III) containing the dipyridophenazine ligand are synthesized through the direct introduction of a functionalized dipyridophenazine ligand onto a bis(dichloro)-bridged Ir(III) precusor and characterized by 1H NMR, mass spectrometry, as well as spectroscopic and electrochemical properties. The excited state of the(More)
A cyclometalated complex of Ir(III) is covalently tethered to DNA oligonucleotides and serves as both a photooxidant and photoreductant in the study of DNA-mediated hole transport (HT) and electron transport (ET). Spectroscopic and melting temperature studies support intercalation of the tethered complex into the DNA duplex through the functionalized dppz(More)
Using amino-labeled oligonucleotide probes, we established a simple, robust and low-noise method for simultaneous detection of RNA and DNA by fluorescence in situ hybridization, a highly useful tool to study the large pool of long non-coding RNAs being identified in the current research. With probes either chemically or biologically synthesized, we(More)
Exaggerated radical-induced DNA damage under magnetic fields is of great concern to medical biosafety and biomolecular electronic devices. In this report, the effects of an external magnetic field (MF) on DNA electronic conductivity were investigated by studying the efficiencies of photoinduced DNA-mediated charge transport (CT) via guanine damage. Under a(More)
DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging pi-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence(More)
Charge transport (CT) through DNA has been found to occur over long molecular distances in a reaction that is sensitive to intervening structure. The process has been described mechanistically as involving diffusive charge-hopping among low-energy guanine sites. Using a kinetically fast electron hole trap, N(4)-cyclopropylcytosine ((CP)C), here we show that(More)
  • 1