Fangming Zhu

Learn More
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work(More)
Incremental training has been used for GA-based classifiers in a dynamic environment where training samples or new attributes/classes become available over time. In this paper, ordered incremental genetic algorithms (OIGAs) are proposed to address the incremental training of input attributes for classifiers. Rather than learning input attributes in batch as(More)
Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative(More)
This paper proposes a class decomposition approach to improve the performance of GA-based classifier agents. This approach partitions a classification problem into several class modules in the output domain, and each module is responsible for solving a fraction of the original problem. These modules are trained in parallel and independently, and results(More)
One of the potential applications for agent-based systems is m-commerce. A lot of research has been done on making such systems intelligent to personalize their services for users. In most systems, user-supplied keywords are generally used to help generate profiles for users. In this paper, an evolutionary ontology-based productbrokering agent has been(More)
In the last decade, agent-based e-commerce has emerged as a potential role for the next generation of e-commerce. How to create agents for e-commerce applications has become a serious consideration in this field. This paper proposes a new scheme named agent fabrication and elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent(More)
Feature selection plays an important role in finding relevant or irrelevant features in classification. Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. In this paper, we explore the use of feature selection in modular GA-based classification. We propose a new feature(More)
A number of soft computing approaches such as neural networks, evolutionary algorithms, and fuzzy logic have been widely used for classifier agents to adaptively evolve solutions on classification problems. However, most work in the literature focuses on the learning ability of the individual classifier agent. This article explores incremental,(More)