Fangjie Liu

Learn More
Understanding the specificity of kinases enables prediction of their substrates and uncovering kinase functions in signaling pathways. Traditionally synthesized peptide libraries are used to determine the kinase specificity. In this study, a proteomics-based method was developed to determine the specificity of kinase by taking the advantages of(More)
Conventional sample preparation protocols for phosphoproteome analysis require multiple time-consuming and labor-intensive steps, including cell lysis, protein extraction, protein digestion, and phosphopeptide enrichment. In this study, we found that the presence of a large amount of trypsin in the sample did not interfere with phosphopeptide enrichment and(More)
Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of(More)
An enzymatic approach to label peptide N-termini with isotope-coded affinity tags is presented. This method exploits the high activity of trypsin for peptide synthesis in organic solvents. A cosubstrate containing a stable isotope-coded Arg residue and a biotin tag was synthesized. When the cosubstrate was incubated with tryptic peptides and trypsin in(More)
Human caseinomacropeptide (hCMP) is 65 amino acids in length and was originally derived from the C terminus of human milk kappa-casein. As it is highly abundant in both essential amino acids and branched amino acids, it could be developed as a practical food and even as medicinal nutrition for patients. This study was undertaken to prepare recombinant hCMP(More)
A simple, cost-effective and high throughput method was developed for multiplexed kinase activity assay based on the multiplex isotope labeling of designed substrate peptides. This strategy was successfully applied to monitor the time-dependent consumption of substrates and generation of products in the single and multiple substrate systems.
Trypsin was immobilized on a variety of materials to improve digestion efficiency. However, because the immobilized trypsin will digest proteins during electrophoresis, direct immobilization of active trypsin in polyacrylamide gel will compromise the protein separation. To overcome this problem, here we report a novel polyacrylamide gel with switchable(More)
Recently, certain studies have demonstrated in vitro that prostaglandin E2 (PGE2) promotes human cluster of differentiation (CD)34+ cell homing. However, the sub‑type receptors activated by PGE2 are unknown, as the PGE2 receptor EP1-4 subtypes (EP1-4) are expressed on the membrane of human CD34+ cells. Based on the above, the present study aimed to screen(More)
In this study, we developed a Ti(IV) monolithic spin tip for phosphoproteome analysis of a minute amount of biological sample for the first time. The surface of polypropylene pipet tip was activated by the photoinitiator benzophenone under UV light radiation followed by polymerization of ethylene glycol methacrylate phosphate and bis-acrylamide in the tip(More)
Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel(More)