Learn More
Greenhouse hydroponic experiments were performed to evaluate potential role of H(2)S on Al toxicity in barley seedlings. Seedlings pretreated with 200 μM NaHS as a donor of H(2)S for 24h and subsequently exposed to 100 μM AlCl(3) for 24h had significantly longer roots than those without NaHS. The promoted root elongation was correlated with a substantial(More)
Greenhouse pot experiments were conducted to investigate genotypic differences in response to individual and combined stresses of drought and salinity between Tibetan wild barley genotypes (XZ5, drought-tolerant; XZ16, salinity/aluminum tolerant) and cv. CM72 (salinity-tolerant). Either drought (D) or salinity (S) alone and in combination (D + S) stresses(More)
Hydroponic experiments were performed to investigate physiological mechanisms of selenium (Se) mitigation of Cd toxicity in rice. Exogenous Se markedly reduced Cd concentration in leaves, roots, and stems. Addition or pretreatment of 3 μM Se in 50 μM Cd solution significantly addressed Cd-induced growth inhibition, recovered root cell viability, and(More)
Greenhouse hydroponic experiments were conducted using Cd-sensitive (Xiushui63) and tolerant (Bing97252) rice genotypes to evaluate genotypic differences in response of photosynthesis and phytochelatins to Cd toxicity in the presence of exogenous glutathione (GSH). Plant height, chlorophyll content, net photosynthetic rate (Pn), and biomass decreased in 5(More)
The drought-stimulated gene expression of NCED, SUS, and KS - DHN and ABA signal cross-talk with other phytohormones maintains barley root growth under drought stress at pH 4.0 plus polyethylene glycol plus aluminum. Aluminum (Al) toxicity and drought are two major factors that limit barley production. In this work, the individual and combined effects of(More)
Greenhouse hydroponic experiments were conducted using Cd-sensitive (cv. Xiushui63) and tolerant (Bing97252) rice genotypes to evaluate how different genotypes responded to Cd toxicity in presence of glutathione (GSH). Results showed that GSH alleviates Cd-toxicity, ameliorates Cd-induced damages on leaf/root ultrastructures. Nine proteins in roots were(More)
Soil salinity and drought are the two most common and frequently co-occurring abiotic stresses constraining crop growth and productivity. Greenhouse pot experiments were conducted to investigate the tolerance potential and mechanisms of Tibetan wild barley genotypes (XZ5, drought-tolerant; XZ16, salinity/aluminum tolerant) during anthesis compared with(More)
To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low-grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared(More)
A hydroponic experiment was carried out to study the physiological mechanisms of N-acetyl cysteine (NAC) in mitigating cadmium (Cd) toxicity in two barley (Hordeum vulgare L.) genotypes, Dong 17 (Cd-sensitive) and Weisuobuzhi (Cd-tolerant). Addition of 200 μM NAC to a culture medium containing 5 μM Cd (Cd + NAC) markedly alleviated Cd-induced growth(More)
Cadmium (Cd) is a severe detrimental environmental pollutant. To adapt to Cd-induced deleterious effects, plants have evolved sophisticated defence mechanisms. In this study, a genome-wide transcriptome analysis was performed to identify the mechanisms of Cd tolerance using two barley genotypes with distinct Cd tolerance. Microarray expression profiling(More)