Fang-Xiang Wu

Learn More
We describe a new method to model gene expression from time-course gene expression data. The modelling is in terms of state-space descriptions of linear systems. A cell can be considered to be a system where the behaviours (responses) of the cell depend completely on the current internal state plus any external inputs. The gene expression levels in the cell(More)
Personalized drug design requires the classification of cancer patients as accurate as possible. With advances in genome sequencing and microarray technology, a large amount of gene expression data has been and will continuously be produced from various cancerous patients. Such cancer-alerted gene expression data allows us to classify tumors at the(More)
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of(More)
The study of stability is essential for designing or controlling genetic regulatory networks. This paper addresses global and robust stability of genetic regulatory networks with time delays and parameter uncertainties. Most existing results on this issue are based on the linear matrix inequalities (LMIs) approach, which results in checking the existence of(More)
MOTIVATION Drug repositioning, which aims to identify new indications for existing drugs, offers a promising alternative to reduce the total time and cost of traditional drug development. Many computational strategies for drug repositioning have been proposed, which are based on similarities among drugs and diseases. Current studies typically use either(More)
BACKGROUND AND SCOPE Nowadays, centrality analysis has become a principal method for identifying essential proteins in biological networks. Here we present CytoNCA, a Cytoscape plugin integrating calculation, evaluation and visualization analysis for multiple centrality measures. IMPLEMENTATION AND PERFORMANCE (i) CytoNCA supports eight different(More)
Microarray technology has produced a huge body of time-course gene expression data. Such gene expression data has proved useful in genomic disease diagnosis and genomic drug design. The challenge is how to uncover useful information in such data. Cluster analysis has played an important role in analyzing gene expression data. Many distance/correlation- and(More)
Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and(More)
Several methods have been proposed to infer gene regulatory networks from time course gene expression data. As the number of genes is much larger than the number of time points at which gene expression (mRNA concentration) is measured, most existing methods need some ad hoc assumptions to infer a unique gene regulatory network from time course gene(More)