Learn More
Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing , among others. But the linked structures of social networks do not reveal actual interactions among people. Scarcity of attention and the(More)
The subject of collective attention is central to an information age where millions of people are inundated with daily messages. It is thus of interest to understand how attention to novel items propagates and eventually fades among large populations. We have analyzed the dynamics of collective attention among 1 million users of an interactive web site,(More)
The tragedy of the digital commons does not prevent the copious voluntary production of content that one witnesses in the web. We show through an analysis of a massive data set from YouTube that the productivity exhibited in crowdsourcing exhibits a strong positive dependence on attention, measured by the number of downloads. Conversely, a lack of attention(More)
In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked(More)
Activation of several signaling pathways contributes to long-term synaptic plasticity, but how brief stimuli produce coordinated activation of these pathways is not understood. In Aplysia, the long-term facilitation (LTF) of sensory neuron synapses by 5-hydroxytryptamine (serotonin; 5-HT) requires the activation of several kinases, including(More)
The CLC-family protein CLC-ec1, a bacterial homologue of known structure, stoichiometrically exchanges two Cl(-) for one H(+) via an unknown membrane transport mechanism. This study examines mutations at a conserved tyrosine residue, Y445, that directly coordinates a Cl(-) ion located near the center of the membrane. Mutations at this position lead to(More)
To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein(More)