Learn More
Recalcitrance to saccharification is a major limitation for conversion of lignocellulosic biomass to ethanol. In stems of transgenic alfalfa lines independently downregulated in each of six lignin biosynthetic enzymes, recalcitrance to both acid pretreatment and enzymatic digestion is directly proportional to lignin content. Some transgenics yield nearly(More)
14-3-3 proteins function as major regulators of primary metabolism and cellular signal transduction in plants. However, their involvement in plant defense and stress responses is largely unknown. In order to better address functions of the rice 14-3-3/GF14 proteins in defense and abiotic stress responses, we examined the rice GF14 family that comprises(More)
We have completed a second-generation linkage map that incorporates sequence-based positional information. This new map, the Rutgers Map v.2, includes 28,121 polymorphic markers with physical positions corroborated by recombination-based data. Sex-averaged and sex-specific linkage map distances, along with confidence intervals, have been estimated for all(More)
NAM, ATAF, and CUC2 (NAC) proteins are encoded by one of the largest plant-specific transcription factor gene families. The functions of many NAC proteins relate to different aspects of lignocellulosic biomass production, and a small group of NAC transcription factors has been characterized as master regulators of plant cell wall development. In the present(More)
Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the(More)
The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in(More)
Lignin inhibits forage digestibility by ruminant animals, and lignin levels and the proportion of dimethylated syringyl (S) lignin monomers increase with progressive maturity in stems of forage crops. We generated transgenic alfalfa (Medicago sativa L.) with reduced lignin content and altered lignin composition. Down-regulation of caffeic acid(More)
The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene(More)
As a major component of the cell wall, lignin plays an important role in plant development and defense response to pathogens, but negatively impacts biomass processability for biofuels. Silencing the target lignin genes for greater biomass processability should not significantly affect plant development and biomass yield but also must not compromise disease(More)
Stem tissues of tall fescue (Festuca arundinacea Schreb.) were sampled at three elongation stages and three reproductive stages. Anatomical analysis showed the deposition of guaiacyl (G) and syringyl (S) lignin during plant development and the formation of a lignified sclerenchyma ring. A dramatic increase in Klason lignin content was found from elongation(More)