Learn More
BACKGROUND Delivery of anticancer therapeutic agents to solid tumors is problematic. Macromolecular drug carriers are an attractive alternative drug delivery method because they appear to target tumors and have limited toxicity in normal tissues. We investigated how molecular weight influences the accumulation of a model macromolecular drug carrier, dextran(More)
Angiogenesis plays important roles in many physiologic and pathologic processes in the body. To understand mechanisms of angiogenesis, we developed a mathematical model for quantitative analysis of various biological events involved in angiogenesis. Our model was focused on two-dimensional angiogenesis in the cornea. The model considered diffusion of(More)
Molecular exclusion in tumor tissues is one of the limiting factors for drug delivery to tumor cells. It can be quantified by the available volume fraction of solutes (KAV). We found in a previous study that KAV of dextran in tumor tissues decreased sharply when the molecular weight (MW) of dextran was increased from 40,000 to 70,000. Outside this range,(More)
Pulsed electric field has been widely used as a nonviral gene delivery platform. The delivery efficiency can be improved through quantitative analysis of pore dynamics and intracellular transport of plasmid DNA. To this end, we investigated mechanisms of cellular uptake of macromolecules during electroporation. In the study, fluorescein(More)
TP-38 is a recombinant chimeric targeted toxin composed of the EGFR binding ligand TGF-α and a genetically engineered form of the Pseudomonas exotoxin, PE-38. After in vitro and in vivo animal studies that showed specific activity and defined the maximum tolerated dose (MTD), we investigated this agent in a Phase I trial. The primary objective of this study(More)
Efficiency of intratumoral infusion for drug and gene delivery depends on intrinsic tissue structures as well as infusion-induced changes in these structures. To this end, we investigated effects of infusion pressure (P inf) and infusion-induced tissue deformation on infusion rate (Q) in three mouse tumor models (B16.F10, 4T1, and U87) and developed a(More)
The intratumoral field, which determines the efficiency of electric field-mediated drug and gene delivery, can differ significantly from the applied field. Therefore, we investigated the distribution of the electric field in mouse tumors and tissue phantoms exposed to a large range of electric stimuli, and quantified the resistances of tumor, skin, and(More)
TP-38 is a recombinant chimeric targeted toxin composed of the EGFR binding ligand TGF-alpha and a genetically engineered form of the Pseudomonas exotoxin, PE-38. After in vitro and in vivo animal studies that showed specific activity and defined the maximum tolerated dose (MTD), we investigated this agent in a Phase I trial. The primary objective of this(More)
Human infections of H5N1 highly pathogenic avian influenza virus have continued to occur in China without corresponding outbreaks in poultry, and there is little conclusive evidence of the source of these infections. Seeking to identify the source of the human infections, we sequenced 31 H5N1 viruses isolated from humans in China (2005 to 2010). We found a(More)
The use of animal models in drug discovery studies presents issues with feasibility and ethical concerns. To address these limitations, in vitro tissue models have been developed to provide a means for systematic, repetitive, and quantitative investigation of drugs. By eliminating or reducing the need for animal subjects, these models can serve as platforms(More)