Faifan Tantakitti

  • Citations Per Year
Learn More
We report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson-Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell(More)
Targeting of vascular intervention by systemically delivered supramolecular nanofibers after balloon angioplasty is described. Tracking of self-assembling peptide amphiphiles using fluorescence shows selective binding to the site of vascular intervention. Cylindrical nanostructures are observed to target the site of arterial injury, while spherical(More)
We describe in this work the synthesis of microparticles with a doxorubicin drug conjugated alginate core and a shell of peptide amphiphile nanofibres functionalized for targeting the folate receptor. The spherical geometry of the particle core allows high drug loading per surface area, whereas the nanoscale fibrous shell formed by self-assembly of peptide(More)
Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent(More)
By means of two supramolecular systems--peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps--we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in(More)
Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide(More)
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be(More)
Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent spatial and temporal resolution. The most commonly used MR probes face significant challenges originating from the endogenous (1)H background signal of water. In contrast, fluorine MRI ((19)F MRI) allows quantitative probe imaging with zero background signal. Probes(More)
Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far,(More)
Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated(More)