# Faezeh Toutounian

• Applied Mathematics and Computation
• 2013
In this paper, an iterative scheme is proposed to find the roots of a nonlinear equation. It is shown that this iterative method has fourth order convergence in the neighborhood of the root. Based on this iterative scheme, we propose the main contribution of this paper as a new high-order computational algorithm for finding an approximate inverse of a(More)
• Applied Mathematics and Computation
• 2006
In this paper, we propose a new method for solving general linear systems with several right-hand sides. This method is based on global least squares method and reduces the original matrix to the lower bidiagonal form. We derive a simple recurrence formula for generating the sequence of approximate solutions {Xk}. Some theoretical properties of the new(More)
• Applied Mathematics and Computation
• 2006
In this paper, we propose two new algorithms based on modified global Arnoldi algorithm for solving large Sylvester matrix equations AX + XB = C where A ∈ Rn×n, B ∈ Rs×s, X and C ∈ Rn×s. These algorithms are based on the global FOM and GMRES algorithms and we call them by Global FOM-SylvesterLike(GFSL) and Global GMRES-Sylvester-Like(GGSL) algorithms,(More)
• Applied Mathematics and Computation
• 2006
In this paper, we present the block least squares method for solving nonsymmetric linear systems with multiple righthand sides. This method is based on the block bidiagonalization. We first derive two algorithms by using two different convergence criteria. The first one is based on independently minimizing the 2-norm of each column of the residual matrix(More)
• Applied Mathematics and Computation
• 2007
This paper presents a new version of the successive approximationsmethod for solving Sylvester equationsAX XB = C, where A and B are symmetric negative and positive definite matrices, respectively. This method is based on the block GMRES-Sylvester method. We also discuss the convergence of the new method. Some numerical experiments for obtaining the(More)
The major drawback of the s-step iterative methods for nonsymmetric linear systems of equations is that, in the floating-point arithmetic, a quick loss of orthogonality of s-dimensional direction subspaces can occur, and consequently slow convergence and instability in the algorithm may be observed as s gets larger than 5. In [18], Swanson and Chronopoulos(More)
• Applied Mathematics and Computation
• 2006
One of the most important problem for solving the linear system Ax = b, by using the iterative methods, is to use a good stopping criterion and to determine the common significant digits between each corresponding components of computed solution and exact solution. In this paper, for a certain class of iterative methods, we propose a way to determine the(More)
and Applied Analysis 3 Remark 5 (complex partial differential operators). Thepartial differential operators ∂/∂x and ∂/∂y are applied to a complexvalued function f = u + iV in the natural way: ∂f ∂x = ∂u ∂x + i ∂V ∂x , ∂f ∂y = ∂u ∂y + i ∂V ∂y . (7) We define the complex partial differential operators ∂/∂z and ∂/∂z by ∂ ∂z = 1 2 ( ∂ ∂x − i ∂ ∂y ) , ∂ ∂z = 1(More)