Learn More
BACKGROUND Catheter ablation of ventricular tachycardia (VT) is still one of the most challenging procedures in cardiac electrophysiology, limited, in part, by unmappable arrhythmias that are nonsustained or poorly tolerated. Calculation of the inverse solution from body surface potential mapping (sometimes known as ECG imaging) has shown tremendous promise(More)
The problem of using surface data to reconstruct transmural electrophysiological (EP) signals is intrinsically ill-posed without a unique solution in its unconstrained form. Incorporating physiological spatiotemporal priors through probabilistic integration of dynamic EP models, we have previously developed a Bayesian approach to transmural(More)
OBJECTIVES The aim of this study was to use multidetector computed tomography (MDCT) to assess therapeutic effects of myocardial regenerative cell therapies. BACKGROUND Cell transplantation is being widely investigated as a potential therapy in heart failure. Noninvasive imaging techniques are frequently used to investigate therapeutic effects of cell(More)
Myocardial scar is the most common substrate for malignant arrhythmia and cardiac arrest. Radiofrequency ablation, as one of the emerging mainstream therapies, currently relies on electrophysiologic (EP) map acquired on endocardial and occasionally epicardial surfaces. As myocardial scar is often complex with shapes varying with the depth of the myocardium,(More)
BACKGROUND Myocardial infarction (MI) scar constitutes a substrate for ventricular tachycardia (VT), and an accurate delineation of infarct scar may help to identify reentrant circuits and thus facilitate catheter ablation. One of the recent advancements in characterization of a VT substrate is its volumetric delineation within the ventricular wall by(More)
Electrical dyssynchrony is postulated to be one of the main factors contributing to non-response of patients to cardiac resynchronization therapy (CRT). We applied inverse epicardial imaging computed from patient-specific geometry and body-surface potential recordings to assess global and regional electrical dyssynchrony. Patients were imaged pre- and(More)
The goal of the 2007 PhysioNet/Computers in Cardiology Challenge was to try to establish how well it is possible to characterize the location and extent of old myocardial infarcts using electrocardiographic evidence supplemented by anatomical imaging information. A brief overview of the challenge and how different challengers approached the competition is(More)
INTRODUCTION The interplay between electrical activation and mechanical contraction patterns is hypothesized to be central to reduced effectiveness of cardiac resynchronization therapy (CRT). Furthermore, complex scar substrates render CRT less effective. We used novel cardiac computed tomography (CT) and noninvasive electrocardiographic imaging (ECGI)(More)
AIMS Electromechanical de-coupling is hypothesized to explain non-response of dyssynchrony patient to cardiac resynchronization therapy (CRT). In this pilot study, we investigated regional electromechanical uncoupling in 10 patients referred for CRT using two non-invasive electrical and mechanical imaging techniques (CMR tissue tracking and ECGI). METHODS(More)