Learn More
Neurexins are highly polymorphic cell-surface adhesive molecules in neurons. In cultured mammalian cell system, they were found to be involved in synaptogenesis. Here, we report for the first time that Drosophila neurexin is required for synapse formation and associative learning in larvae. Drosophila genome encodes a single functional neurexin (CG7050;(More)
In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously(More)
Dicer or Dicer-like (DCL) protein is a catalytic component involved in microRNA (miRNA) or small interference RNA (siRNA) processing pathway, whose fragment structures have been partially solved. However, the structure and function of the unique DUF283 domain within dicer is largely unknown. Here we report the first structure of the DUF283 domain from the(More)
The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of(More)
KEY POINTS Synaptic excitation and inhibition must be properly balanced in individual neurons and neuronal networks to allow proper brain function. Disrupting this balance may lead to autism spectral disorders and epilepsy. We show the basic helix-loop-helix transcription factor NeuroD2 promotes inhibitory synaptic drive but also decreases cell-intrinsic(More)
Neurogenic differentiation factor 2 (NeuroD2) is a highly expressed transcription factor in the developing central nervous system. In newborn neurons, NeuroD2-mediated gene expression promotes differentiation, maturation, and survival. In addition to these early, cell-intrinsic developmental processes, NeuroD2 in postmitotic neurons also regulates synapse(More)
  • 1