Learn More
The purpose of this investigation is to understand situations under which an enhancement method succeeds in recovering an image from data which are noisy and blurred. The method in question is due to Rudin and Osher. The method selects, from a class of feasible images, one that has the least total variation. Our investigation is limited to images which have(More)
The problem of creating eigenfunctions which are localized arises in the study of photonic bandgap structures. A model problem, that of finding material inhomogeneity in a domain so that one of its Dirichlet eigenfunctions is localized, is considered in this work. The most difficult aspect, that of formulating the problem, is described, and well-posed(More)
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality(More)
Electrical impedance tomography is a procedure by which one nds the conductivity distribution inside a domain from measurements of voltages and currents at the boundary. This work addresses the issue of stability and resolution limit of such an imaging device. We consider the realistic case where only a nite number of measurements are available. An(More)
Scattering of waves by a thin structure is considered in this work. The Helmholtz equation with variable coefficient models the wave phenomena. The scatterer is assumed to have a high index of refraction while at the same time it is very small in one of the dimensions. We show that if the index scales as O(1/h), where h is the thickness of the scatterer,(More)