Learn More
Many divide-and-conquer algorithms employ the fact that the vertex set of a graph of bounded treewidth can be separated in two roughly balanced subsets by removing a small subset of vertices, referred to as a separator. In this paper we prove a trade-off between the size of the separator and the sharpness with which we can fix the size of the two sides of(More)
In a classical online network design problem, traffic requirements are gradually revealed to an algorithm. Each time a new request arrives, the algorithm has to satisfy it by augmenting the network under construction in a proper way (with no possibility of recovery). In this paper we study a natural generalization of online network design problems, where a(More)
Given an n-node edge-weighted graph and a subset of k terminal nodes, the NP-hard (weighted) Steiner tree problem is to compute a minimum-weight tree which spans the terminals. All the known algorithms for this problem which improve on trivial O(1.62 n )-time enumeration are based on dynamic programming, and require exponential space. Motivated by the fact(More)
  • 1