Fabrizio Gasparini

Learn More
In the present paper we describe 2-methyl-6-(phenylethynyl)-pyridine (MPEP) as a potent, selective and systemically active antagonist for the metabotropic glutamate receptor subtype 5 (mGlu5). At the human mGlu5a receptor expressed in recombinant cells, MPEP completely inhibited quisqualate-stimulated phosphoinositide (PI) hydrolysis with an IC50 value of(More)
Recently, selective and systemically active antagonists for the metabotropic glutamate 5 receptor (mGlu(5)) were discovered, and the most potent derivative was found to be MPEP (2-methyl-6-(phenylethynyl)pyridine). Given the high expression of mGlu(5) receptors in limbic forebrain regions, it was decided to evaluate the anxiolytic potential of MPEP. After(More)
1. Several lines of evidence suggest a crucial involvement of glutamate in the mechanism of action of anxiolytic and/or antidepressant drugs. The involvement of group I mGlu receptors in anxiety and depression has also been proposed. Given the recent discovery of a selective and brain penetrable mGlu5 receptor antagonists, the effect of(More)
Metabotropic glutamate receptors (mGluRs) are a family of G protein-coupled receptors characterized by a large, extracellular N-terminal domain comprising the glutamate-binding site. In the current study, we examined the pharmacological profile and site of action of the non-amino-acid antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl(More)
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also(More)
Phencyclidine (PCP), a non-competitive antagonist of ionotropic N-methyl-D-aspartate (NMDA) receptors, produces psychotomimetic effects, such as a disruption in prepulse inhibition (PPI) of the startle response. NMDA antagonists also induce locomotor hyperactivity in rodents. We hypothesized that, like NMDA receptors, metabotropic glutamate receptors(More)
In the present study, we evaluated the effect of the prototypical metabotropic glutamate receptor 5 (mGlu(5)) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on motor behaviour in rats using the accelerating rotarod, spontaneous locomotor activity and the 6-hydroxy-dopamine (6-OHDA) lesion model to assess its treatment potential for Parkinson's(More)
The stress-induced hyperthermia test is a paradigm developed several years ago to model the expression of autonomic hyperactivity in anxiety. Whereas in the classical stress-induced hyperthermia, cohort removal was used, in a recently described modification of the stress-induced hyperthermia model singly housed mice rather than groups of mice were used. The(More)
Following the molecular cloning in the early 1990s of the metabotropic glutamate receptors (mGlu1-8), research that focused on the physiology, pharmacology and function of these receptors revealed their potential role in CNS disorders. Numerous psychiatric and neurological dis-orders are indeed linked to changes in excitatory processes, in which glutamate(More)
The excitatory neurotransmitter, glutamate, is particularly important in the transmission of pain information in the nervous system through the activation of ionotropic and metabotropic glutamate receptors. A potent, subtype-selective antagonist of the metabotropic glutamate-5 (mGlu5) receptor, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has now been(More)