Fabrizio Capuani

Learn More
Thermodynamics constrains the flow of matter in a reaction network to occur through routes along which the Gibbs energy decreases, implying that viable steady-state flux patterns should be void of closed reaction cycles. Identifying and removing cycles in large reaction networks can unfortunately be a highly challenging task from a computational viewpoint.(More)
Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell's surroundings, a feature known as the Warburg effect. While the(More)
The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently(More)
Networks of biochemical reactions, like cellular metabolic networks, are kept in non-equilibrium steady states by the exchange fluxes connecting them to the environment. In most cases, feasible flux configurations can be derived from minimal mass-balance assumptions upon prescribing in-and out-take fluxes. Here we consider the problem of inferring(More)
We quantify the amount of regulation required to control growth in living cells by a Maximum Entropy approach to the space of underlying metabolic states described by genome-scale models. Results obtained for E. coli and human cells are consistent with experiments and point to different regulatory strategies by which growth can be fostered or repressed.(More)
  • 1