Learn More
Improvement of the quality and efficiency of healthcare in medicine, both at home and in hospital, is becoming more and more important for patients and society at large. As many technologies (micro technologies, telecommunication, low-power design, new textiles, and flexible sensors) are now available, new user-friendly devices can be developed to enhance(More)
In this work, the design of flexible and stretchable interconnections is presented. These interconnections are done by embedding sinuous electroplated metallic wires in a stretchable substrate material. A silicone material was chosen as substrate because of its low stiffness and high elongation before break. Common metal conductors used in the electronic(More)
A wireless body area network (WBAN) consists of a wireless network with devices placed close to, attached on, or implanted into the human body. Wireless communication within a human body experiences loss in the form of attenuation and absorption. A path loss model is necessary to account for these losses. In this article, path loss is studied in the(More)
In the frame of the Flemish Community funded project Bioflex we developed and fabricated an implant for short term (< 7 days) bladder pressure monitoring, and diagnosis of incontinence. This implant is soft and flexible to prevent damaging the bladder's inner wall. It contains a standard flexible electronic circuit connected to a battery, which are embedded(More)
In order to fit human body, flexibility, or even better stretchability is requested for biomedical systems like implants or smart clothes. A stretchable electronic technology has been developed. This can provide highly stretchable interconnections fully compatible with PCB technologies. In order to prove the feasibility of complex biomedical systems like(More)
In this work, we propose the use of shape-memory polymer as an anchoring system for a bladder sensor. The anchoring system was designed from a biomedical biodegradable water-based poly(ester-urethane) produced in an aqueous environment by using isophorone diisocyanate/hydrazine (hard segment) and poly(caprolactone diol)/2,2-bis (hydroxymethyl) propionic(More)
For user comfort reasons, electronic circuits for implantation in the human body or for use as smart clothes should ideally be soft, stretchable and elastic. In this contribution the results of an MID (Molded Interconnect Device) technology will be presented, showing the feasibility of functional stretchable electronic circuits. In the developed technology(More)
An electronic device was fabricated consisting of 2 flexible electronic circuit islands, interconnected by a 7 cm long elastic interconnection, which could be elongated for at least 50%. This interconnection was based on gold conductor tracks following a 2-D spring pattern, embedded in a biocompatible silicone elastomer. The complete device was embedded in(More)
  • 1