Learn More
Neurodegeneration, the slow and progressive dysfunction and loss of neurons and axons in the central nervous system, is the primary pathological feature of acute and chronic neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury and multiple(More)
Regulatory CD25(+)CD4+ T cells (Treg cells) are a central element of peripheral tolerance. Little is known, however, about phenotypic and functional characteristics of these cells with regard to memory. In this study we show that the chemokine receptor CCR6 is expressed on a distinct subset of mouse Treg cells. Similar to their CD25- counterparts, CCR6+(More)
Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating(More)
BACKGROUND Neurofilament (NF) proteins detection in biological fluids as a by-product of axonal loss is technically challenging and to date relies mostly on cerebrospinal fluid (CSF) measurements. Plasma antibodies against NF proteins and particularly to their soluble light chain (NF-L) could be a more practical surrogate marker for disease staging in(More)
Although the primary cause of multiple sclerosis (MS) is unknown, the widely accepted view is that aberrant (auto)immune responses possibly arising following infection(s) are responsible for the destructive inflammatory demyelination and neurodegeneration in the central nervous system (CNS). This notion, and the limited access of human brain tissue early in(More)
Multiple sclerosis (MS) is widely considered to be the result of an aggressive autoreactive T cell attack on myelin. How these autoimmune responses arise in MS is unclear, but they could result from virus infections. Thus, viral and autoimmune diseases in animals have been used to investigate the possible pathogenic mechanisms operating in MS. The(More)
Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. We studied the(More)
Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there(More)
BACKGROUND Increased levels of antibodies to neurofilament light protein (NF-L) in biological fluids have been found to reflect neuroinflammatory responses and neurodegeneration in multiple sclerosis (MS). OBJECTIVE To evaluate whether levels of serum antibodies against NF-L correlate with clinical variants and treatment response in MS. METHODS The(More)
Hydrogen bonds (H-bonds) are crucial for the stability of the peptide-major histocompatibility complex (MHC) complex. In particular, the H-bonds formed between the peptide ligand and the MHC class II binding site appear to have a great influence on the half-life of the complex. Here we show that functional groups with the capacity to disrupt hydrogen bonds(More)