Fabiola E. Medina

Learn More
In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh(More)
Ti-6Al-4V alloy with two kinds of open cellular structures of stochastic foam and reticulated mesh was fabricated by additive manufacturing (AM) using electron beam melting (EBM), and microstructure and mechanical properties of these samples with high porosity in the range of 62%∼92% were investigated. Optical observations found that the cell struts and(More)
The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography(More)
Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures(More)
A Structure Activity Relationship (SAR) study for laccase mediator systems was performed in order to correctly classify different natural phenolic mediators. Decision tree (DT) classification models with a set of five quantum-chemical calculated molecular descriptors were used. These descriptors included redox potential (ɛ°), ionization energy (E(i)),(More)
This paper reports on the synthesis of new short aliphatic chain ionic liquids and the study of the temperature dependence of density, ultrasonic velocities, and ionic conductivity in the range of 278.15-338.15 K. Fourier transform infrared spectra establishes their simple ionic salt structure. Because of their polarity, the ionic liquids are able to(More)
The core electron temperature (T(e0)) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T(e0) estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x(More)
Based on the multi-foil technique, a multichannel soft x-ray diagnostic for electron temperature measurements has been recently implemented in the TJ-II stellarator. The diagnostic system is composed by four photodiodes arrays with beryllium filters of different thickness. An in-vacuum amplifier board is coupled to each array, aiming at preventing induced(More)
Human fatty acid synthase (hFAS) is a multifunctional enzyme involved in a wide diversity of biological functions. For instance, it is a precursor of phospholipids and other complex processes such as the de novo synthesis of long chain fatty acid. Human FAS is also a component of biological membranes and it is implicated in the overexpression of several(More)
The inhibitory activity of 15 sulfonylureas on acetohydroxyacid synthase (AHAS) is addressed theoretically in order to stress how important the conformation is to explain their differences as AHAS inhibitors. The study includes calculations in gas phase, solution, and in the enzymatic environment. The results suggest that both the activation Gibbs free(More)