Fabio Tebaldi Silveira Nogueira

Learn More
MicroRNAs and trans-acting siRNAs (ta-siRNAs) have important regulatory roles in development. Unlike other developmentally important regulatory molecules, small RNAs are not known to act as mobile signals during development. Here, we show that low-abundant, conserved ta-siRNAs, termed tasiR-ARFs, move intercellularly from their defined source of biogenesis(More)
Small RNAs are important regulators of gene expression. In maize, adaxial/abaxial (dorsoventral) leaf polarity is established by an abaxial gradient of microRNA166 (miR166), which spatially restricts the expression domain of class III homeodomain leucine zipper (HD-ZIPIII) transcription factors that specify adaxial/upper fate. Here, we show that(More)
MicroRNAs (miRNAs) and trans-acting siRNAs (ta-siRNAs) are essential to the establishment of adaxial-abaxial (dorsoventral) leaf polarity. Tas3-derived ta-siRNAs define the adaxial side of the leaf by restricting the expression domain of miRNA miR166, which in turn demarcates the abaxial side of leaves by restricting the expression of adaxial determinants.(More)
The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to(More)
  • 1