Learn More
Actin filaments are instrumental in driving processes such as migration, cytokinesis and endocytosis and provide cells with mechanical support. During angiogenesis, actin-rich filopodia protrusions have been proposed to drive endothelial tip cell functions by translating guidance cues into directional migration and mediating new contacts during anastomosis.(More)
Endothelial cells show surprising cell rearrangement behaviour during angiogenic sprouting; however, the underlying mechanisms and functional importance remain unclear. By combining computational modelling with experimentation, we identify that Notch/VEGFR-regulated differential dynamics of VE-cadherin junctions drive functional endothelial cell(More)
Integrin-linked kinase (ILK) and cytoplasmic adaptors of the PINCH and parvin families form a ternary complex, termed IPP, that localizes to integrin adhesions. We show here that deletion of the genes encoding ILK or PINCH1 similarly blocks maturation of focal adhesions to tensin-rich and phosphotyrosine-poor fibrillar adhesions (FBs) by downregulating(More)
An essential component of microtubules, α-tubulin is also a multigene family in many species. An orthology-based nomenclature for this gene family has previously been difficult to assign due to incomplete genome builds and the high degree of sequence similarity between members of this family. Using the current genome builds, sequence analysis of human,(More)
An essential component of microtubules, alpha-tubulin is also a multigene family in many species. An orthology-based nomenclature for this gene family has previously been difficult to assign due to incomplete genome builds and the high degree of sequence similarity between members of this family. Using the current genome builds, sequence analysis of human,(More)
PINCH2 belongs, together with PINCH1, to a new family of focal adhesion proteins, the members of which are composed of five LIM domains. PINCH1 and PINCH2 interact, through their first LIM domain, with the integrin-linked kinase and thereby link integrins with several signal transduction pathways. Despite their high similarity, it has been shown that PINCH1(More)
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains(More)
PINCH1 is composed of 5 LIM domains, binds integrin-linked kinase (ILK) and locates to integrin-mediated adhesion sites. In order to investigate PINCH1 function we generated mice and embryonic stem (ES) cell-derived embryoid bodies (EBs) lacking the PINCH1 gene. Similar to mice lacking beta1 integrin or Ilk, loss of PINCH1 arrested development at the(More)
Glioblastoma multiforme (GBM) are highly invasive and angiogenic malignancies with a median survival time from diagnosis of <15 months. Previous work has revealed robust overexpression of fibronectin (FN) mRNA in GBM, although immunohistochemical staining of FN in these tumors is typically associated with the angiogenic vasculature. Here we sought to(More)