Fabio Pasqualetti

Learn More
Cyber-physical systems are ubiquitous in power systems, transportation networks, industrial control processes, and critical infrastructures. These systems need to operate reliably in the face of unforeseen failures and external malicious attacks. In this paper (i) we propose a mathematical framework for cyberphysical systems, attacks, and monitors; (ii) we(More)
This work addresses the problem of ensuring trustworthy computation in a linear consensus network. A solution to this problem is relevant for several tasks in multi-agent systems including motion coordination, clock synchronization, and cooperative estimation. In a linear consensus network, we allow for the presence of misbehaving agents, whose behavior(More)
The subject of this paper is the patrolling of an environment with the aid of a team of autonomous agents. We consider both the design of open-loop trajectories with optimal properties and of distributed control laws converging to optimal trajectories. As performance criteria, the refresh time and the latency are considered, i.e., respectively, time gap(More)
This paper studies the problem of controlling complex networks, i.e., the joint problem of selecting a set of control nodes and of designing a control input to steer a network to a target state. For this problem, 1) we propose a metric to quantify the difficulty of the control problem as a function of the required control energy, 2) we derive bounds based(More)
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states(More)
This paper focuses on trustworthy computation systems and proposes a novel intrusion detection scheme for linear consensus networks with misbehaving nodes. This prototypical control problem is relevant in network security applications. The objective is for each node to detect and isolate the misbehaving nodes using only the information flow adopted by(More)
This work proposes a novel metric to characterize the resilience of stochastic cyber-physical systems to attacks and faults. We consider a single-input single-output plant regulated by a control law based on the estimate of a Kalman filter. We allow for the presence of an attacker able to hijack and replace the control signal. The objective of the attacker(More)
Future power networks will be characterized by safe and reliable functionality against physical malfunctions and cyber attacks. This paper proposes a unified framework and advanced monitoring procedures to detect and identify network components malfunction or measurements corruption caused by an omniscient adversary. We model a power system under(More)