Fabio Mavelli

Learn More
Spherical bounded structures such as those formed by surfactant aggregates (mostly micelles and vesicles), with an inside that is chemically and physically different from the outside medium, can be seen as primitive cell models. As such, they are fundamental structures for the theory of autopoiesis as originally formulated by Varela and Maturana. In(More)
In this paper, we apply a recently developed stochastic simulation platform to investigate the dynamic behaviour of minimal 'self-(re-)producing' cellular systems. In particular, we study a set of preliminary conditions for appearance of the simplest forms of autonomy in the context of lipid vesicles (more specifically, lipid-peptide vesicles) that enclose(More)
Isolated and purified reaction centers (RC) from Rhodobacter sphaeroides R-26.1 were solubilised in detergent with excess quinone and external electron donors and illuminated in the presence of pyranine. The pH change accompanying the reaction center photocycle was monitored by recording the variation of the pyranine fluorescence intensity. Using(More)
Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper(More)
This paper is a theoretical attempt to gain insight into the problem of how self-assembling vesicles (closed bilayer structures) could progressively turn into minimal self-producing and self-reproducing cells, i.e. into interesting candidates for (proto)biological systems. With this aim, we make use of a recently developed object-oriented platform to carry(More)
In this article we present novel aspects of the impact that synthetic biology (SB) can express in a field traditionally based on computer science: information and communication technologies (ICTs), an area that we will consider taking into account also possible implications for artificial intelligence (AI) research. In the first part of this article we will(More)
The wet-lab synthesis of the simplest forms of life (minimal cells) is a challenging aspect in modern synthetic biology. Quasi-cellular systems able to produce proteins directly from DNA can be obtained by encapsulating the cell-free transcription/translation system PURESYSTEM™(PS) in liposomes. It is possible to detect the intra-vesicle protein production(More)
Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell's interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life,(More)