Learn More
Total disc arthroplasty (TDA) has been successfully used for monosegmental treatment in the last few years. However, multi-level TDA led to controversial clinical results. We hypothesise that: (1) the more artificial discs are implanted, the stronger the increases in spinal mobility and facet joint forces in flexion and extension; (2) deviations from the(More)
Osmotic phenomena influence the intervertebral disc biomechanics. Their simulation is challenging and can be undertaken at different levels of complexity. Four distinct approaches to simulate the osmotic behaviour of the intervertebral disc (a fixed boundary pore pressure model, a fixed osmotic pressure gradient model in the whole disc or only in the(More)
This study presents a finite element model of the C4-C7 segment in healthy conditions and after implantation of a disc prosthesis at a single level, in order to investigate of the influence of disc arthroplasty on the biomechanics of the cervical spine. A nonlinear finite element model of the C4-C7 segment in intact conditions was developed and run in(More)
The study consists of a biomechanical comparison between the intact C5-C6 spinal segment and the same segment implanted with the Bryan artificial disc prosthesis (Medtronic Ltd., Memphis, TN, USA), by the use of the finite element (FE) method. Our target is the prediction of the influence of prosthesis placement on the resulting mechanics of the C5-C6 spine(More)
A post contrast magnetic resonance imaging study has been performed in a wide population of low back pain patients to investigate which radiological and phenotypic characteristics influence the penetration of the contrast agent in lumbar discs in vivo. 37 patients affected by different pathologies (disc herniation, spondylolisthesis, foraminal stenosis,(More)
Degeneration of the intervertebral disc is related to progressive changes in the disc tissue composition and morphology, such as water loss, disc height loss, endplate calcification, osteophytosis. These changes may be present separately or, more frequently, in various combinations. This work is aimed to the biomechanical investigation of a wide range of(More)
OBJECT Interspinous devices are widely used for the treatment of lumbar stenosis. The DIAM spinal stabilization system (Medtronic, Ltd.) is an interspinous implant made of silicone and secured in place with 2 laces. The device can be implanted via posterior access with the sacrifice of the supraspinous ligament (SSL) or via lateral access with preservation(More)
BACKGROUND CONTEXT There is no universal consensus regarding the biomechanical aspects and relevance on the primary stability of misplaced pedicle screws. PURPOSE The study is aimed to the determination of the correlation between axial pullout forces of pedicle screws with the possible screw misplacement, including mild and severe cortical violations. (More)
OBJECT Cervical instrumented fusion is currently performed using several fixation methods. In the present paper, the authors compare the following 4 implantation methods: a stand-alone cage, a cage supplemented by an anterior locking plate, a cage supplemented by an anterior dynamic plate, and a dynamic combined plate-cage device. METHODS Four finite(More)
We present a numerical approach to reproduce various patterns of spino-pelvic organization. We wanted to predict the spinal loads in two static conditions (standing and holding a weight in the hands) based on parameters describing the shape of the lumbar spine: type following Roussouly classification, sacral slope, apex, inflection point and lumbar(More)