Fabio Beltram

Carmine Di Rienzo9
Laura Marchetti8
9Carmine Di Rienzo
8Laura Marchetti
Learn More
Spatial distribution and dynamics of plasma-membrane proteins are thought to be modulated by lipid composition and by the underlying cytoskeleton, which forms transient barriers to diffusion. So far this idea was probed by single-particle tracking of membrane components in which gold particles or antibodies were used to individually monitor the molecules of(More)
Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with(More)
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate(More)
The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing(More)
Thanks to their ability to recognize biomolecular targets with high affinity and specificity, nucleic acid aptamers are increasingly investigated as diagnostic and therapeutic tools, particularly when their targets are cell-surface receptors. Here, we investigate the relationship between the folding of an anti-mouse transferrin receptor DNA aptamer and its(More)
Cells are exposed to specific directional physical signals determined by the micro/nano-environment that in vivo coexist with some degree of topographical noise. Particularly in the nervous system, cell contact sensing of the extracellular environment plays a primary role in defining neurite initiation and final brain wiring. Here we study neuronal cell(More)
The neurotrophin receptor TrkA (also known as NTRK1) is known to be crucially involved in several physio-pathological processes. However, a clear description of the early steps of ligand-induced TrkA responses at the cell plasma membrane is missing. We have exploited single particle tracking and TIRF microscopy to study TrkA membrane lateral mobility and(More)
During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction(More)
The design of materials to promote the development and/or regeneration of neuronal tissue requires the understanding of the mechanisms by which the underlying substrate topography can modulate neuronal cell differentiation and migration. We recently demonstrated that plastic nanogratings (alternating lines of grooves and ridges of submicrometer size) can(More)
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer(More)