Learn More
Winner-take-all multiclass classifiers are built on the top of a set of prototypes each representing one of the available classes. A pattern is then classified with the label associated to the most 'similar' prototype. Recent proposal of SVM extensions to multiclass can be considered instances of the same strategy with one prototype per class. The(More)
In many applicative contexts in which textual documents are labelled with thematic categories, a distinction is made between the primary categories of a document, which represent the topics that are central to it, and its secondary categories, which represent topics that the document only touches upon. We contend that this distinction, so far neglected in(More)
The development of neural network (NN) models able to encode structured input, and the more recent definition of kernels for structures, makes it possible to directly apply machine learning approaches to generic structured data. However, the effectiveness of a kernel can depend on its sparsity with respect to a specific data set. In fact, the accuracy of a(More)
Tree kernels proposed in the literature rarely use information about the relative location of the substructures within a tree. As this type of information is orthogonal to the one commonly exploited by tree kernels, the two can be combined to enhance state-of-the-art accuracy of tree kernels. In this brief, our attention is focused on subtree kernels. We(More)
Recent results in theoretical machine learning seem to suggest that nice properties of the margin distribution over a training set turns out in a good performance of a classifier. The same principle has been already used in SVM and other kernel based methods as the associated optimization problems try to maximize the minimum of these margins. In this paper,(More)