Learn More
The major mRNA degradation pathway involves deadenylation of the target molecule followed by decapping and, finally, 5'-->3' exonuclease digestion of the mRNA body. While yeast factors involved in the decapping and exonuclease degradation steps have been identified, the nature of the factor(s) involved in the deadenylation step remained elusive. Database(More)
In Saccharomyces cerevisiae, a large complex, known as the Ccr4-Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 A resolution. The domain(More)
The yeast Pop2 protein, belonging to the eukaryotic Caf1 family, is required for mRNA deadenylation in vivo. It also catalyzes poly(A) degradation in vitro, even though this property has been questioned. Caf1 proteins are related to RNase D, a feature supported by the recently published structure of Pop2. Yeast Pop2 contains, however, a divergent active(More)
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly(More)
The CCR4-NOT complex was originally identified and its composition and organization characterized in the yeast Saccharomyces cerevisiae. It was first suggested to participate in transcription regulation, but since then it has become clear that it plays a key role in mRNA decay in all eukaryotes, thereby contributing importantly to gene expression(More)
A cDNA clone encoding a Brassica napus drought-induced 22 kDa (BnD22) protein has been isolated and characterized. The BnD22 transcript accumulated in response to drought reversibly, and to other conditions of leaf water deficit such as rapid water stress or salt acclimation, but not to cold acclimation or heat shock. Exogenously applied abscisic acid(More)
BTG/TOB factors are a family of antiproliferative proteins whose expression is altered in numerous cancers. They have been implicated in cell differentiation, development and apoptosis. Although proposed to affect transcriptional regulation, these factors interact with CAF1, a subunit of the main eukaryotic deadenylase, and with poly(A)-binding-proteins,(More)
BTG2 is a prototype member of the BTG/Tob family of antiproliferative proteins, originally identified as a primary response gene induced by growth factors and tumour promoters. Its expression has been linked to diverse cellular processes such as cell-cycle progression, differentiation or apoptosis. BTG2 has also been shown to interact with the Pop2/Caf1(More)