Learn More
Kinetochores are megadalton-sized protein complexes that mediate chromosome-microtubule interactions in eukaryotes. How kinetochore assembly is triggered specifically on centromeric chromatin is poorly understood. Here we use biochemical reconstitution experiments alongside genetic and structural analysis to delineate the contributions of(More)
Kinetochores are large protein complexes that link sister chromatids to the spindle and transduce microtubule dynamics into chromosome movement. In budding yeast, the kinetochore-microtubule interface is formed by the plus end-associated Dam1 complex and the kinetochore-resident Ndc80 complex, but how they work in combination and whether a physical(More)
Kinetochores must remain associated with microtubule ends, as they undergo rapid transitions between growth and shrinkage. The molecular basis for this essential activity that ensures correct chromosome segregation is unclear. In this study, we have used reconstitution of dynamic microtubules and total internal reflection fluorescence microscopy to define(More)
Oscillating cyclin-dependent kinase 1 (Cdk1) activity is the major regulator of cell-cycle progression, whereas the Aurora B kinase, as part of the chromosome passenger complex (CPC), controls critical aspects of mitosis such as chromosome condensation and biorientation on the spindle. How these kinases mechanistically coordinate their important functions(More)
References cited within the Supplementary Methods section of this Article were not identified in the Supplementary References section. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass(More)
Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3(More)
  • 1