Fabienne Godin

Learn More
Several lines of evidence indicate an association between mitochondrial DNA (mtDNA) and the functioning of the nervous system. As neuronal development and structure as well as axonal and synaptic activity involve mitochondrial genes, it is not surprising that most mtDNA diseases are associated with brain disorders. Only one study has suggested an(More)
The distribution of the mariner transposable element among Drosophilidae species was investigated using three different techniques, i.e. squash blots, Southern blots and PCR amplification, using two sets of primers (one corresponding to the Inverted Terminal Repeats and the other to two conserved regions of the putative transposase). Our results and those(More)
We compared deleted copies of the seven mauritiana subfamilies of mariner transposable elements in species of the Drosophilidae. All elements were detected by PCR using the inverted terminal repeats of the Mos1 element of Drosophila mauritiana as primers. A higher frequency of breakpoints in the 5′ part of the element compared to the 3′ part was observed.(More)
Themariner transposable elements of several natural populations ofDrosophila teissieri, a rainforest species endemic to tropical Africa, were studied. Natural populations trapped along a transect from Zimbabwe to the Ivory Coast were analyzed by Southern blotting, in situ hybridization, cloning, and sequencing of PCR products. The Brazzaville population had(More)
BACKGROUND AND PURPOSE The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of(More)
We have performed a phylogenetic analysis of 59 mariner elements in 14 Drosophilidae species that are related to the active Drosophila mauritiana Mos1 element. This includes 38 previously described sequences and 21 new sequences amplified by PCR from 10 species. Most of the elements detected are nonfunctional due to several frameshifts and deletions. They(More)
BACKGROUND Ras GTPases mediate numerous biological processes through their ability to cycle between an inactive GDP-bound form and an active GTP-bound form. Guanine nucleotide exchange factors (GEFs) favor the formation of the active Ras-GTP, whereas GTPase activating proteins (GAPs) promote the formation of inactive Ras-GDP. Numerous studies have(More)
Tfs1p and Ylr179cp are yeast proteins belonging to the PEBP family. Tfs1p, but not Ylr179cp, has been shown to interact with and inhibit Ira2p, a GTPase-activating protein of Ras. Tfs1p has been shown to be a specific inhibitor of the CPY protease and the 3D structure of the complex has been resolved. To shed light on the molecular determinants of Tfs1p(More)
The Saccharomyces cerevisiae protein Tfs1p is known as a dual protein. On the one hand, it inhibits the carboxypeptidase Y protease, and on the other, it inhibits Ira2p, a GTPase-activating protein of Ras. We managed to dissect precise areas of Tfs1p specifically involved in only one of those functions. Based on these data, specific Tfs1p point mutants(More)