Learn More
Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage,(More)
Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin recruitment to impaired mitochondria.(More)
TDP-43 is an RNA/DNA-binding protein implicated in transcriptional repression and mRNA processing. Inclusions of TDP-43 are hallmarks of frontotemporal dementia and amyotrophic lateral sclerosis. Besides aggregation of TDP-43, loss of nuclear localization is observed in disease. To identify relevant targets of TDP-43, we performed expression profiling.(More)
Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of(More)
Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear--a situation(More)
TDP-43 is linked to neurodegenerative diseases including frontotemporal dementia and amyotrophic lateral sclerosis. Mostly localized in the nucleus, TDP-43 acts in conjunction with other ribonucleoproteins as a splicing co-factor. Several RNA targets of TDP-43 have been identified so far, but its role(s) in pathogenesis remains unclear. Using Affymetrix(More)
Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson's disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore(More)
The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. In this study, we have demonstrated that α-synuclein (αSYN), a major constituent of(More)
Platelets have been regarded as static cells that do not move once they adhere to a matrix. The present study explored, whether platelets are able to migrate. In contrast to the current opinion, we found that platelets were mobile, able to migrate over a surface, and transmigrate through a transwell membrane and endothelium toward a source of stromal(More)
TDP-43 (transactive response binding protein of 43 kDa) and FUS (fused in sarcoma) comprise the neuropathological protein aggregates of distinct subtypes of the neurodegenerative diseases frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Moreover, the genes encoding TDP-43 and FUS are linked to these diseases. Both TDP-43 and FUS contain(More)