Fabien Guillemot

Learn More
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross-talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co-culture between(More)
In parallel with ink-jet printing and bioplotting, biological laser printing (BioLP) using laser-induced forward transfer has emerged as an alternative method in the assembly and micropatterning of biomaterials and cells. This paper presents results of high-throughput laser printing of a biopolymer (sodium alginate), biomaterials (nano-sized hydroxyapatite(More)
Over this decade, cell printing strategy has emerged as one of the promising approaches to organize cells in two and three dimensional engineered tissues. High resolution and high speed organization of cells are some of the key requirements for the successful fabrication of cell-containing two or three dimensional constructs. So far, none of the available(More)
Bottom-up tissue engineering technologies address two of the main limitations of top-down tissue engineering approaches: the control of mass transfer and the fabrication of a controlled and functional histoarchitecture. These emerging technologies encompass mesoscale (e.g. cell sheets, cell-laden hydrogels and 3D printing) and microscale technologies (e.g.(More)
We present the first attempt to apply bioprinting technologies in the perspective of computer-assisted medical interventions. A workstation dedicated to high-throughput biological laser printing has been designed. Nano-hydroxyapatite (n-HA) was printed in the mouse calvaria defect model in vivo. Critical size bone defects were performed in OF-1 male mice(More)
The International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) demonstrated that the field of bioprinting and biofabrication continues to evolve. The increasing number and broadening geography of participants, the emergence of new exciting bioprinting technologies, and the attraction of young investigators indicates the strong growth(More)
Layer-by-layer biofabrication represents a novel strategy to create three-dimensional living structures with a controlled internal architecture, using cell micromanipulation technologies. Laser assisted bioprinting (LAB) is an effective printing method for patterning cells, biomolecules, and biomaterials in two dimensions. "Biopapers," made of thin polymer(More)
Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue(More)
To increase an orthopedic implant's lifetime, research trends have included the development of new titanium alloys made of nontoxic elements with suitable mechanical properties (low Young's modulus - high fatigue strength), good workability and corrosion resistance. In accordance with the background on titanium and metallic biomaterials, recent interesting(More)
In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step(More)