Fabien Grasset

Learn More
Upconversion nanoparticles (UCN) that are excited in the near infrared (NIR) region were synthesized and modified to enable their application to biological systems for imaging. The UCN obtained are oleic acid capped and hence hydrophobic in nature. Since the particles were to be used for imaging cells, a surface modification to make them hydrophilic and(More)
Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs(2)Mo(6)Br(14) as cluster precursor. [Mo(6)Br(14)](2-) cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate(More)
By exploiting colloidal properties, such as transparency, rheology and versatile chemistry, we propose to synthesize new photonic nanomaterials based on colloidal solutions and thin films. This contribution highlights our efforts to elaborate and to characterize nanostructures based on the ZnO-TiO2 system. Using a recently developed sol-gel route to(More)
Water-in-oil (W/O) microemulsion is a well-suitable confined reacting medium for the synthesis of structured functional nanoparticles of controlled size and shape. During the last decade, it allowed the synthesis of multi-functional silica nanoparticles with morphologies as various as core-shell, homogenous dispersion or both together. The morphology and(More)
The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting(More)
Bioimaging and cell labeling using red or near infrared phosphors emitting in the "therapeutic window" of biological tissues have recently become some of the most active research fields in modern medical diagnostics. However, because organic and inorganic autofluorophores are omnipresent in nature, very often the background signal from fluorochromes other(More)
Liquid-crystalline hybrid nanomaterials have been obtained by grafting mesogenic units around luminescent ZnO nanocrystals of 5 nm in diameter. Modifying the mesogenic density around the inorganic core allows the modulation of the liquid-crystalline behavior and its miscibility in commercial liquid crystal (LC). The strong blue photoluminescence observed(More)
Nanostructured silica coated bifunctional nanoparticles based on [Mo(6)Br(14)](2-) units as phosphorescent dye and magnetic gamma-Fe(2)O(3) nanocrystals were synthesized and characterized.
The foundation of nanoscience is that the properties of materials change as a function of their physical dimensions, and nanotechnology exploits this premise by applying selected property modifications for a specific benefit. However, to investigate the fate and effect of the engineered nanoparticles on toxic metal (TM) mobility, the analytical limitations(More)
Metal atom clusters constitute very promising candidates as luminophores for applications in biotechnology because they are nanosized entities offering robust luminescence in the near-infrared field (NIR). However, they cannot be used as prepared for biological applications because of potential toxic effects and quenching of the clusters' luminescence in(More)