Learn More
OBJECTIVE Electrical stimulation of the median nerve followed by a magnetic pulse on the primary motor cortex (M1) is effective to cause an increase in the amplitude of motor evoked potential (MEP) registered in the target muscle with the interstimulus interval (ISI) at 25ms (paired associative stimulation, PAS). The aim of this study is to evaluate the(More)
Humans have an individual profile of the electroencephalographic power spectra at the 8 to 16 Hz frequency during non-rapid eye movement sleep that is stable over time and resistant to experimental perturbations. We tested the hypothesis that this electroencephalographic "fingerprint" is genetically determined, by recording 40 monozygotic and dizygotic(More)
OBJECTIVE The first-night effect (FNE) is a common issue in sleep research. Being considered fragmented and poorly efficient, the adaptation night is discarded for data analysis. The present study aims to provide a quantitative and topographical EEG analysis of this phenomenon. METHODS Eight healthy subjects slept for two consecutive nights (adaptation(More)
OBJECTIVE The study aims to compare transcallosal inhibition (TI), as assessed by the paired-pulse transcranial magnetic stimulation (TMS) technique, in a sample of right-handed subjects (RH) and left-handed subjects (LH). Motor thresholds (MTs) and motor evoked potential (MEP) amplitudes were also measured in the two groups, as an index of corticospinal(More)
Transcranial magnetic stimulation (TMS) of the motor cortex of one hemisphere (conditioning stimulus (CS)) inhibits EMG responses evoked in distal hand muscles by a later magnetic stimulus given at an appropriate interval, over the opposite hemisphere (test stimulus (TS)). This effect is commonly attributed to an inhibition produced at cortical level via a(More)
STUDY OBJECTIVES The aim of the study is to assess, in humans, transcallosal inhibition upon awakening from rapid eye movement (REM) and non-REM sleep, by paired-pulse transcranial magnetic stimulation (TMS). DESIGN During the daytime, a baseline session of motor evoked potentials (MEPs) was recorded. During the nighttime, the TMS sessions were(More)
BACKGROUND Sleep electroencephalogram (EEG) brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex(More)
RATIONALE The aim of the present study was to assess, intraindividually, the relationship among slow eye movements, electroencephalogram (EEG) power, and subjective measures of sleepiness during a 40-hour sleep deprivation comparing 2 experimental conditions: eyes-open and eyes-closed. METHODS Nineteen normal subjects participated in a sleep-deprivation(More)
BACKGROUND A deficit in interhemispheric transfer was hypothesized in alexithymia more than 30 years ago, following the observation that split-brain patients manifest certain alexithymic characteristics. However, direct evidence of interhemispheric transfer deficit has never been provided. This study investigated the hypothesis of a transcallosal(More)
The aim of the present study was to characterize the regional electroencephalographic substratum of the awakening process by means of a Hz-by-Hz EEG spectral power analysis. For this purpose, we recorded a group of 25 female subjects who slept for at least two consecutive nights in the laboratory. The post-sleep waking EEG was compared to the one recorded(More)