Fabian Schönfeld

Learn More
A second generation micro-mixer, being a further optimised version of a first prototype, relying on the consequent utilisation of the split-and-recombine principle is presented. We show that the mixing can be characterized by a positive finite-time Lyapunov exponent although being highly regular and uniform. Using computational fluid dynamics (CFD) we(More)
Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the(More)
This work presents the design and implementation of a massively parallel 3-SAT solver, specifically targeting random problem instances. Our approach is deterministic and features very little communication overhead and basically no load-balancing cost at all. In the context of most current parallel SAT solvers running only on a handful of cores, we(More)
What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows(More)
This feature article focuses on tuning options of photoluminescence properties of lanthanide containing Metal-Organic Frameworks (MOFs) and Dense Frameworks by selection of an appropriate set of metal ions together with suitable ligands. In addition to lanthanide-only systems, frameworks with main group and transition metal ions that are heterometallic or(More)
In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a(More)
Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues(More)