#### Filter Results:

#### Publication Year

2013

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Fabian Grusdt
- 2015

- Aditya Shashi, Fabian Grusdt, Dmitry A. Abanin, Eugene Demler
- 2014

Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein condensate (BEC) of ultracold atoms. Here, we consider impurities with two or more internal hyperfine states, and study their radio-frequency (rf) absorption spectra, which correspond to transitions between two different hyperfine states. We calculate rf… (More)

- F. Grusdt, Y. E. Shchadilova, A. N. Rubtsov, E. Demler
- Scientific reports
- 2015

When a mobile impurity interacts with a many-body system, such as a phonon bath, a polaron is formed. Despite the importance of the polaron problem for a wide range of physical systems, a unified theoretical description valid for arbitrary coupling strengths is still lacking. Here we develop a renormalization group approach for analyzing a paradigmatic… (More)

We propose a class of variational Gaussian wave functions to describe Fröhlich polarons at finite momenta. Our wave functions give polaron energies that are in excellent agreement with the existing Monte Carlo results for a broad range of interactions. We calculate the effective mass of polarons and find smooth crossover between weak-and… (More)

- Fabian Grusdt, Fabian Letscher, Mohammad Hafezi, Michael Fleischhauer
- Physical review letters
- 2014

We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta… (More)

- F. Grusdt
- 2016

The Fröhlich model describes the interaction of a mobile impurity with a surrounding bath of phonons which leads to the formation of a quasiparticle, the polaron. In this paper an efficient renormalization group approach is presented which provides a description of Fröhlich polarons in all regimes ranging from weak to strong coupling. The extended… (More)

Topological states of interacting many-body systems are at the focus of current research due to the exotic properties of their elementary excitations. In this paper we suggest a realistic experimental setup for the realization of a simple version of such a phase. We show how δ-interacting bosons hopping on the links of a one-dimensional ladder can be used… (More)

We propose an interferometric method to measure Z 2 topological invariants of time-reversal invariant topological insulators realized with optical lattices in two and three dimensions. We suggest two schemes which both rely on a combination of Bloch oscillations with Ramsey interferometry and can be implemented using standard tools of atomic physics. In… (More)

- Fabian Grusdt, Michael Höning, Michael Fleischhauer
- Physical review letters
- 2013

We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the Mott insulating (MI) phases. Depending on the ratio t1/t2 the… (More)

- F. Grusdt, M. Fleischhauer
- 2013

We study ultracold Rydberg-dressed Bose gases subject to artificial gauge fields in the fractional quantum Hall (FQH) regime. The characteristics of the Rydberg interaction give rise to interesting many-body ground states different from standard FQH physics in the lowest Landau level. The nonlocal but rapidly decreasing interaction potential favors… (More)