Learn More
Modifications around the dipeptide-mimetic core of a hydroxamic acid based matrix metalloproteinase inhibitor were studied. These variations incorporated a variety of natural, unnatural, and synthetic amino acids in addition to modifications of the P1' and P3' substituents. The results of this study indicate the following structural requirements: (1) Two(More)
We first generalize the concept of clutter power spectrum locus so that it can be applied to arbitrary antenna arrays. This locus is a curve in the 4D space of the Doppler frequency and the 3 spatial frequencies. This generalization is valid for both monostatic and bistatic radar configurations. We show that the customary clutter power spectrum locus(More)
The increasing interest for arbitrary antenna arrays in radar space-time adaptive processing (STAP) creates a need for a thorough understanding of the role of, and dependencies between, spatial and Doppler frequencies and related quantities, especially in the characterization of clutter. We successively introduce " geometrical " and statistical concepts,(More)
Structural features of heparin potentially important for heparanase-inhibitory activity were examined by measuring the ability of heparin derivatives to affect the degradation of [3H]acetylated heparan sulphate by tumor cell heparanases. IC50 values were determined using an assay which distinguished degraded from undegraded substrate by precipitation of the(More)
We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP) radar. Determining the optimum weights at each range requires data snapshots at neighboring ranges. However, in virtually all configurations, snapshot statistics are range dependent, meaning that snapshots are nonstationary with respect to range. This results(More)
— We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP). The construction of the optimum weights at each range implies the estimation of the interference-plus-noise covariance matrix. This is typically done by straight averaging of snapshots at neighboring ranges. However, in most bistatic configurations,(More)
We address the problem of detecting slow-moving targets using a space-time adaptive processing (STAP) radar. The construction of optimum weights at each range implies the estimation of the clutter covariance matrix. This is typically done by straight averaging of neighboring data snapshots. The range-dependence of these snapshots generally results in poor(More)
The problem of detecting slow-moving targets using a space-time adaptive processing (STAP) radar is addressed. The determination of the optimum interference-rejection weights at each range is based on snapshots at neighbouring ranges. However, in virtually all bistatic configurations or/and when using conformal antenna arrays (CAA), snapshot statistics are(More)
— We consider space-time adaptive processing (STAP) in a bistatic radar configuration and when the radar returns are recorded by a conformal antenna array (CAA). The statistics of the secondary data snapshots used to estimate the optimum weight vector are not identically distributed with respect to range, thus preventing the STAP processor from achieving(More)