Learn More
Colloidal semiconductor-magnetic hybrid nanocrystals with topologically controlled composition are fabricated by heterogeneous nucleation of spherical epsilon-Co domains onto anatase TiO2 nanorods. The latter can be selectively decorated at either their tips or at multiple locations along their longitudinal sidewalls, forming lattice-matched(More)
A colloidal nonaqueous approach to semiconductor-magnetic hybrid nanocrystals (HNCs) with selectable heterodimer topologies and tunable geometric parameters is demonstrated. Brookite TiO(2) nanorods, distinguished by a curved shape-tapered profile with richly faceted terminations, are exploited as substrate seeds onto which a single spherical domain of(More)
The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new(More)
Five crystal forms of the amide-type local anesthetic S-bupivacaine hydrochloride (levobupivacaine) were prepared and characterized by means of thermal analytical methods, FTIR- and Raman-spectroscopy, powder X-ray diffractometry, and moisture sorption analysis. Commercial lots of the substance may consist of form A degrees , the thermodynamically stable(More)
Tetrapod-shaped maghemite nanocrystals are synthesized by manipulating the decomposition of iron pentacarbonyl in a ternary surfactant mixture under mild thermal conditions. Adjustment of the reaction parameters allows for the systematic tuning of both the width and the length of the tetrapod arms, which grow preferentially along the 111 easy axis(More)
The motion of atoms in a solid always responds to cooling or heating in a way that is consistent with the symmetry of the given space group of the solid to which they belong. When the atoms move, the electronic structure of the solid changes, leading to different physical properties. Therefore, the determination of where atoms are and what atoms do is a(More)
The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120 degrees in 2theta in fractions of seconds. Thanks(More)
The crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material. The molecules form an efficient dense packing, which explains the observed insolubility and weather fastness of the pigment.(More)
Desolvated zeolitic imidazolate framework ZIF-4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non-porous, low temperature phase was determined from synchrotron X-ray powder diffraction data and its density was found to be slightly less than that of(More)
We report the reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4, [Zn(Im)(2)]). This occurs irrespective of pore occupancy and takes place via a novel high pressure phase (ZIF-4-I) when solvent molecules are present in the pores. A significant reduction in bulk modulus upon framework evacuation is also observed for both(More)