Fabián Salazar

Learn More
Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization,(More)
Allergic diseases are a global public health issue affecting millions of persons around the world. However, full understanding of the molecular basis of this group of chronic inflammatory disorders remains rather elusive. Recently, the role of carbohydrates on allergens and their counterstructures on antigen-presenting cells (lectins) have been highlighted(More)
BACKGROUND Dendritic cells (DCs) are key players in the induction and re-elicitation of TH2 responses to allergens. We have previously shown that different C-type lectin receptors on DCs play a major role in allergen recognition and uptake. In particular, mannose receptor (MR), through modulation of Toll-like receptor (TLR) 4 signaling, can regulate(More)
The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional(More)
Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflammatory (M1) and anti-inflammatory (M2) macrophages with distinct functional and phenotypical characteristics.(More)
Dithiothreitol (DTT) and other dithiol antioxidants with closely spaced thiol pairs strongly activate leukocyte function antigen-1 (LFA-1, alphaLbeta2 integrin) to bind intercellular adhesion molecule-1 (ICAM-1). Because direct biochemical modification of LFA-1 by DTT is not apparently involved, we investigated the possible role of a reduction-oxidation(More)
A controlled inflammatory response is required for protection against infection, but persistent inflammation causes tissue damage. Dendritic cells (DCs) have a unique capacity to promote both inflammatory and anti-inflammatory processes. One key mechanism involved in DC-mediated immunosuppression is the expression of tryptophan-metabolizing enzyme(More)
Indoleamine 2,3-dioxygenase (IDO) catalyzes the degradation of tryptophan, which plays a critical role in immune suppression through regulating the production of a series of metabolites that are generally referred to as kynurenines. It has become increasingly clear that epithelial cells (ECs) play an active role in maintaining lung homeostasis by modulating(More)
The immediate tissue microenvironment of implanted biomedical devices and engineered tissues is highly influential on their long term fate and efficacy. The creation of a long-term anti-inflammatory microenvironment around implants and artificial tissues can facilitate their integration. Macrophages are highly plastic cells that define the tissue reactions(More)
  • 1