Learn More
Previous studies reported that miR-29c is significantly downregulated in several tumors. However, little is known about the effect and molecular mechanisms of action of miR-29c in human glioma. Using quantitative RT-PCR, we demonstrated that miR-29c was significantly downregulated in glioma cell lines and human primary glioma tissues, compared to normal(More)
Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of(More)
Human 3-methyladenine-DNA glycosylase (MPG protein) initiates base excision repair by severing the glycosylic bond of numerous damaged bases. In comparison, homologues of the Rad23 proteins (hHR23) and the hXPC protein are involved in the recognition of damaged bases in global genome repair, a subset of nucleotide excision repair. In this report, we show(More)
The methylpurine-DNA glycosylase (MPG) gene coding for human 3-methyladenine (3-meAde)-DNA glycosylase functions in the first step of base excision repair (BER) to remove numerous damaged bases including 3-meGua, ethenoadenine, and hypoxanthine (Hx) in addition to 3-meAde. In this report, we identify the length of the minimal MPG promoter region,(More)
This study was designed to explore the role of Cullin1 (Cul1) in the pathogenesis of human glioma and to investigate the role of Cul1 in the growth, migration and invasion of glioma cells. Expression of Cul1 in 191 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues was analyzed by tissue microarray and immunohistochemistry.(More)
Alkylation damage of DNA is one of the major types of insults which cells must repair to remain viable. One way alkylation damaged ring nitrogens are repaired is via the Base Excision Repair (BER) pathway. Examination of mutants in both BER and Nucleotide Excision Repair show that there is actually an overlap of repair by these two pathways for the removal(More)
  • 1