FD Warner

Learn More
Binding of 21 S dynein ATPase isolated from Tetrahymena cilia to B subfibers of microtubule doublets was used as a model system to study dynein-tubulin interactions and their relationship to the microtubule-based sliding filament mechanism. Binding of 21 S dynein to both A and B microtubule subfibers is supported by monovalent as well as divalent ions.(More)
The sliding tubule model of ciliary motion requires that active sliding of microtubules occur by cyclic cross-bridging of the dynein arms. When isolated, demembranated Tetrahymena cilia are allowed to spontaneously disintegrate in the presence of ATP, the structural conformation of the dynein arms can be clearly resolved by negative contrast electron(More)
Isolated, demembranated Unio gill cilia that have been activated and fixed for thin-section electron microscopy in the presence of 2 mM MgSO4 have 87% of their outer dynein arms attached to an adjacent B subfiber. The distribution of attached arms is uniform with respect to doublet position in the cilium. When both 0.1 mM ATP and Mg++ are added to the(More)
We recently demonstrated that addition of the divalent cation Mg++ to demembranated cilia causes the dynein arms to attach uniformly to the B subfibers. We have now studied the dose-dependent relationship between Mg++ or Ca++ and dynein bridging frequencies and microtubule sliding in cilia isolated from Tetrahymena. Both cations promote efficient dynein(More)
Electron micrographs of both negatively contrasted and thin-sectioned lamellibranch gill cilia reveal several new features of ciliary fine structure, particularly in regard to those structures forming intermittent or permanent crossbridges between microtubules. Negative-contrasting reveals the presence of a 14-5-nm repeating bridge between the central(More)
Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the(More)
Properties of the sliding disintegration response of demembranated tetrahymena cilia have been studied by measuring the spectrophotomeric response or turbidity of cilia suspensions at a wavelength of 350 nm relative to changes in the dynein substrate (MgATP(2-)) concentration. The maximum decrease in turbidity occurs in 20 muM ATP, and 90 percent of the(More)
Ciliary doublet microtubules produced by sliding disintegration in 20 muM MgATP2-reassociate in the presence of exogenous 30S dynein and 6 mM MgSO4. The doublets form overlapping arrays, held together by dynein cross-bridges. Dynein arms on both A and B subfibers serve as unambiguous markers of microtubule polarity within the arrays. Doublets reassociate(More)
Ciliary axonemes from Tetrahymena contain a second salt-extractable ATPase distinguishable from outer arm 21 S dynein by sedimentation velocity (congruent to 13 S), electrophoretic mobility and substrate specificity. As characterized by turbidimetric assay, gel electrophoresis in the presence of sodium dodecyl sulphate, ATPase activity and electron(More)