• Publications
  • Influence
Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1
The observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1, and the six inner planets form a near-resonant chain, such that their orbital periods are near-ratios of small integers.
Habitable planets around the star Gliese 581
Radial velocity surveys are now able to detect terrestrial planets at habitable distance from M-type stars. Recently, two planets with minimum masses below 10 Earth masses were reported in a triple
A seven-planet resonant chain in TRAPPIST-1
The TRAPPIST-1 system is the first transiting planet system found orbiting an ultra-cool dwarf star. At least seven planets similar to Earth in radius and in mass were previously found to transit
3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability
The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so
The nature of the TRAPPIST-1 exoplanets.
Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of
Emergence of a Habitable Planet
Abstract We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot silicate atmosphere that cooled and condensed over ∼1,000 yrs. As
Water vapour in the atmosphere of a transiting extrasolar planet
An analysis of recent observations of the hot Jupiter HD 189733b taken during the transit, when the planet passed in front of its parent star, finds that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet.
M stars as targets for terrestrial exoplanet searches and biosignature detection.
It is concluded that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations.
The KInetic Database for Astrochemistry (KIDA)
We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and
The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present
Proxima b is a planet with a minimum mass of 1.3 MEarth orbiting within the habitable zone (HZ) of Proxima Centauri, a very low-mass, active star and the Sun's closest neighbor. Here we investigate a