• Publications
  • Influence
The fractional Schrödinger equation for delta potentials
The fractional Schrodinger equation is solved for the delta potential and the double delta potential for all energies. The solutions are given in terms of Fox's H-function.
  • 60
  • 3
  • PDF
Slowing-down of neutrons: a fractional model
The fractional version for the diffusion of neutrons in a material medium is studied. The concept of fractional derivative is presented, in the Caputo and Riesz senses. Using this concept, we discussExpand
  • 10
  • 1
On the fractional Harry Dym equation
We present and discuss the general case of a fractional nonlinear partial differential equation using similarity reductions and recover results associated with Harry Dym-type equations. ParticularExpand
  • 6
Similarity solution to fractional nonlinear space-time diffusion-wave equation
In this article, the so-called fractional nonlinear space-time wave-diffusion equation is presented and discussed. This equation is solved by the similarity method using fractional derivatives in theExpand
  • 16
STUDY OF POLYGONS IN THE ARGAND-GAUSS PLANE
In this work, we present the historical part of the complex numbers, showing its emergence and its evolution over time. We classify the triangles in the Argand-Gauss plane, considering its verticesExpand
Travelling Waves in Space-Fractional Nonlinear Diffusion with Linear Convection
In this paper we investigate anomalous diffusion coupled with linear convection, using fractional calculus to describe the anomalous associated memory effects in diffusive term. We get an explicitExpand
  • 4
  • PDF
GEOMETRICAL QUATERNIONIC COUPLING FOR THREE DIMENSIONAL WAVE EQUATIONS
The present work has the scope to show the relationship between four three-dimensional waves. This fact will be made in the form of coupling, us- ing for it the Cauchy-Riemann conditions forExpand
Fractional thermal systems
We investigate the fractional behavior of the integrators associated with a fractional diffusion equation in an interface, in two different geometries, a wall and a sphere, by means of a new relationExpand
Fractional space–time nonlinear reaction–convection–diffusion
We comment the fractional space–time reaction–convection–diffusion defined by Grünwald–Letnikov, Riesz and Riesz–Feller fractional derivatives. We find the explicit travelling wave solution, usingExpand
  • 3
Fractional wave-diffusion equation with periodic conditions
We study a time-space fractional wave-diffusion equation with periodic conditions using Laplace transforms and Fourier series and presenting its solution in terms of three-parameter Mittag-LefflerExpand
  • 8
...
1
2
...