Learn More
A scanning mobility particle sizer (SMPS) allows size separation of gas phase particles according to their electrophoretic mobilities. The addition of an electrospray source (ES) recently allowed extension of SMPS analysis to the macromolecular range. We demonstrate here the application of ES-SMPS to nucleic acids analysis. Single- and double-stranded DNA(More)
Globular proteins ranging in molecular mass from 5.7 to 669 kDa were separated and analyzed using an aerosol technique based on the electrophoretic mobility of singly-charged molecular ions in air. The ions were produced by electrospraying and drying 100-nm-diameter droplets of a liquid suspension of the proteins, using ionized air to remove the droplet(More)
A new detector for macromolecular separations is described. The detector counts individual macromolecules (molecular weights greater than about 10,000) and reports counts per second. The chromatographic effluent is electrosprayed, neutralized, and swept to the detector by a stream of air. The detector is a condensation particle counter that detects(More)
Polarized fluorescence depletion (PFD) methods (Yoshida, T. M. and B. G. Barisas. Biophys. J. 1986. 50:41-53) are approximately 10(3)-10(4) fold more sensitive than other techniques for measuring protein rotational motions in cell membranes and other viscous environments. Proteins labeled with fluorophores having a high quantum yield for triplet formation(More)
We characterized the particle size distribution and the analyte transmission efficiency of a liquid chromatography/particle beam/mass spectrometry (LC/PB/MS) system as a function of experimental variations normally used to optimize the LC/PB/MS system. The particle size distribution was evaluated using an electrical differential mobility particle sizer(More)
  • 1