• Citations Per Year
Learn More
We report the strain effect of suspended graphene prepared by micromechanical method. Under a fixed measurement orientation of scattered light, the position of the 2D peaks changes with incident polarization directions. This phenomenon is explained by a proposed mode in which the peak is effectively contributed by an unstrained and two uniaxial-strained(More)
Ultrastrong and precisely controllable n-type photoinduced doping at a graphene/TiOx heterostructure as a result of trap-state-mediated charge transfer is demonstrated, which is much higher than any other reported photodoping techniques. Based on the strong light-matter interactions at the graphene/TiOx heterostructure, precisely controlled photoinduced(More)
Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2, persistent photoconductivity (PPC) at different levels has been reported. However, a detailed study of the(More)
The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman(More)
We provide a new approach to identify the substrate influence and doping effect on graphene surface. In this work, the Raman bandwidths of G bands were fitted into the Voigt profile. The bandwidths of Lorentzian parts were kept as constant whether it is the suspended and supported graphene. For the Gaussian part, the suspended graphene exhibit a much(More)
By using Au-nanorod (Au-NR) doped graphene as a transparent conducting electrode, Si-based metal-oxide-semiconductor (MOS) photodetectors (PDs) exhibit high external quantum efficiency (EQE) and fast response time. It is found that upon adding Au-NRs to the graphene, a significant increase in EQE is observed for both planar and Si-nanotip (Si-NT) MOS PDs.(More)
We provide a new approach to identify the substrate influence on graphene surface. Distinguishing the substrate influences or the doping effects of charged impurities on graphene can be realized by optically probing the graphene surfaces, included the suspended and supported graphene. In this work, the line scan of Raman spectroscopy was performed across(More)
Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires(More)
  • 1