Learn More
By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat(More)
We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be(More)
In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations. Although typically the force(More)
We propose a mechanism to actively tune the operation of plasmonic cloaks with an external magnetic field by investigating electromagnetic scattering by a dielectric cylinder coated with a magneto-optical shell. In the long wavelength limit, we show that the presence of a magnetic field may drastically reduce the scattering cross section at all observation(More)
Based on a generalization of the Lifshiftz theory, we calculate Casimir forces involving magnetodielectric and possibly anisotropic metamaterials, focusing on the possibility of repulsive forces. It is found that Casimir repulsion decreases with magnetic dissipation, and even a small Drude background in metallic-based metamaterials acts to make attractive a(More)
We investigate electromagnetic (EM) scattering and plasmonic cloaking in a system composed of a dielectric cylinder coated with a magneto-optical shell. In the long-wavelength limit we demonstrate that the application of an external magnetic field can not only switch on and off the cloaking mechanism but also mitigate losses, as the absorption cross section(More)
  • 1