Learn More
The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from(More)
Various studies have shown that reaction rates between reversibly binding electron transfer proteins depend strongly on solution ionic strength. These observations suggest that intermolecular electrostatic interactions are important in facilitating the formation of a productive reaction complex. A recently examined system involves the reduction of(More)
ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic(More)
The dynamic character of phospholipid aggregates limits conventional structural studies to the determination of average molecular features. In order to develop more detailed descriptions of phospholipid structure for comparison with experiment, the molecular dynamics of a hydrated lysophosphatidylethanolamine (LPE) micelle, incorporating 85 LPE and 1591(More)
We describe a new approach for modeling antigenic peptides recognized by T cells. Peptide A24 170-182 can compete with other antigenic peptides that are recognized by H-2kd-restricted cytolytic T cells, presumably by binding to the Kd molecule. By comparing substituted A24 peptides as competitors in a functional competition assay, the A24 residues Tyr-171,(More)
The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series(More)
Computer simulations of molecular motion provide a useful tool for analyzing dynamic aspects of macromolecular structure and function. In many cases, simulations can be compared to experimental results that provide an average estimate of molecular flexibility. For example, variations in computed molecular motions in different regions of a protein structure(More)
Cytochrome c and cytochrome b5 form an electrostatically associated electron transfer complex. Computer models of this and related complexes that were generated by docking the x-ray structures of the individual proteins have provided insight into the specificity and mechanism of electron transfer reactions. Previous static modeling studies were extended by(More)