Learn More
Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the(More)
The dissociation of OCS has been investigated subsequent to excitation at 248 nm. Speed distributions, speed dependent translational anisotropy parameters, angular momentum alignment, and orientation are reported for the channel leading to S((1)D(2)). In agreement with previous experiments, two product speed regimes have been identified, correlating with(More)
Speed distributions, and spatial anisotropy and atomic angular momentum polarization parameters have been determined for the O((3)P(J)) products following the photodissociation of ozone at 248 and 226 nm using velocity map ion imaging. The data have been interpreted in terms of two dissociation mechanisms that give rise to fast and slow products. In both(More)
The angular momentum polarization of atomic photofragments provides a detailed insight into the dynamics of the photodissociation process. In this article, the origins of electronic angular momentum polarization are introduced and experimental and theoretical methods for the measurement or calculation of atomic orientation and alignment parameters(More)
BACKGROUND The circular nMARQ ablation catheter is a useful tool for pulmonary vein isolation (PVI). Some studies reported a high incidence of esophageal lesions by using this catheter. OBJECTIVE The primary aim of this study was to compare the effects on the esophageal wall of bipolar and unipolar energy applied by the nMARQ ablation catheter during AF(More)
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad(More)
In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the(More)
  • 1