Learn More
The OMEGA/Mars Express hyperspectral imager identified hydrated sulfates on light-toned layered terrains on Mars. Outcrops in Valles Marineris, Margaritifer Sinus, and Terra Meridiani show evidence for kieserite, gypsum, and polyhydrated sulfates. This identification has its basis in vibrational absorptions between 1.3 and 2.5 micrometers. These minerals(More)
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) imaging spectrometer observed the northern circumpolar regions of Mars at a resolution of a few kilometers. An extended region at 240 degrees E, 85 degrees N, with an area of 60 kilometers by 200 kilometers, exhibits absorptions at wavelengths of 1.45, 1.75, 1.94, 2.22, 2.26, and(More)
Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are(More)
The Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) hyperspectral image data covering eastern Terra Meridiani indicate the ubiquitous presence of molecular water in etched terrain materials that disconformably overlie heavily cratered terrains and underlie the hematite-bearing plains explored by the Opportunity rover.(More)
Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units.(More)
The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board(More)
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission(More)
[1] The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) is the most recent spectrometer to arrive at Mars. The instrument is a hyperspectral imager covering visible to near-infrared wavelengths (0.37–3.92 mm at 6.55 nm/channel). Summary products based on multispectral parameters will be derived from(More)
[1] After 2 years of operation the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) imaging spectrometer on board Mars Express has acquired data coverage of the Martian surface with spatial resolution varying between 300 m and 4.8 km, depending on the pericenter altitude of the spacecraft’s elliptical orbit. We report the global(More)
[1] Visible-near infrared reflectance spectra acquired by the Mars Express Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) spectrometer are used to estimate the absolute water content within the uppermost fraction of the Martian regolith. This upper surface layer represents the boundary between the regolith and atmosphere; thus the(More)